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A fluid droplet may exhibit self-propelled motion by modifying the wetting properties of the substrate. We
propose a model for droplet propagation upon a terraced landscape of ordered layers formed as a result of
surface freezing driven by the contact angle dependence on the terrace thickness. Simultaneous melting or
freezing of the terrace edge results in a joint droplet-terrace motion. The model is tested numerically and
compared to experimental observations on long-chain alkane systems in the vicinity of the surface melting
point.
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Motion of mesoscopic liquid droplets is a challenging
problem both in view of numerous technological applications
in surface treatment, microfluidics, etc., and fundamental
questions arising on the borderline between macroscopic and
molecular physics. Different scenarios of droplet motion are
determined by liquid-substrate interactions, and may incor-
porate surface phase transitions and chemical reactions, as
well as more subtle modification of physical properties in
interfacial regions. One can distinguish between three classes
of behavior: passive, interacting, and active. A passive drop-
let gains mobility due to imposed forces, e.g., temperature
gradients �1� or substrate heterogeneity �2�. Motion of inter-
acting droplets is mediated by fluxes through a thin precursor
layer �3,4�. Finally, active droplets may propel themselves by
modifying the substrate either through surfactant deposition
at the three-phase contact line �5� or through chemical reac-
tion proceeding directly on the substrate at the foot of the
droplet �6,7�.

A new type of self-propelled motion discovered recently
in experiments with long-chain alkanes �CnH2n+2� �8� is as-
sociated with surface phase transitions creating a terraced
immobilized layer between the fluid and substrate, as shown
schematically in Fig. 1. The system includes �a� a disordered
bulk liquid alkane droplet; �b� one or more ordered �smectic
A� alkane layers formed as a result of surface freezing; and
�c� a molecularly thin disordered precursor layer. The thick-
ness ratio l /d�1 of the smectic and precursor layers is de-
termined by the aspect ratio of the alkane molecule. The
plateau height is H=Nl, where N�1 is an integer. A similar
situation may arise in layered adsorption, leading to the for-
mation of ordered immobilized molecular layers with the
aspect ratio l /d�O�1�.

Due to a difference in molecular interaction strengths be-
tween the bulk fluid and the smectic and the substrate, the
contact angle of the bulk droplet depends on the number of
smectic layers, and, therefore, the droplet is expected to
move when placed on a terrace as in Fig. 1. Moreover, as
temperature is varied, the terrace surface freezing process

may proceed in two ways, depending on whether it is limited
by material supply or removal of latent heat. The first mecha-
nism involves slow spreading, with the smectic layer grow-
ing sidewise, being augmented by fluid molecules migrating
from the bulk droplet through the precursor �9�. The second
mechanism is fast, and involves terrace growth synchronous
with the droplet motion �8�. Melting, being unconstrained by
material supply, proceeds by the second mechanism in re-
verse. In this Rapid Communication, we suggest a model of
self-propelled droplet motion accompanied by surface freez-
ing or melting on a terraced landscape.

We adopt the lubrication approximation, which accounts
for different scalings in the vertical and the horizontal direc-
tions �10�. The approximation is applicable in a liquid film
with a large aspect ratio, when the interface is weakly in-
clined and curved. The scaling is consistent if one assumes
�z�O�1�, ��O����1, �t�O��2�, where � is the two-
dimensional gradient in the horizontal plane. This scaling
also implies a small contact angle, ��O�1� and results in a
different order of magnitude of the vertical and horizontal
velocities, vz�O��2�, vx�vy �O���. As a consequence, the
pressure or, more generally, a driving potential W is constant
to O��2� across the layer in z direction. The governing equa-
tion for the droplet height h following the mass conservation
condition reads
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FIG. 1. A scheme of a droplet on a terraced smectic layer. l and
d denote, respectively, the molecular dimensions along and across
the long molecular axis; H=Nl is the terrace height, N is an integer
that denotes the number of layers, h is the bulk droplet height, and
�± are the contact angles on the upper and lower plateaus.
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�th = − � · j, j = − �−1k�h� � W, W = 	 − 
�2�2h ,

�1�

where j is the mass flux, � is the dynamic viscosity, k�h� is
the mobility coefficient, 
 is the surface tension, and 	 is the
disjoining potential due to interaction with the solid support
�including both substrate and smectic layers�.

Computation of 	 is the key component of the model. We
assume that all interactions are of the van der Waals type
with the hard-core potential V�r�=� at r�d, V�r�=−Ajr

−6 at
rd, and differ by interaction constants Aj only. Since the
motion is, on the one hand, caused by the difference in con-
tact angles on the two sides and, on the other side, is driven
by excess free energy of either freezing or melting, the dif-
ference between the liquid-terrace �At� and liquid-substrate
�As� interaction constants should change sign when the tem-
perature passes the surface melting point. Equilibrium con-
tact angles can be expressed through the interaction con-
stants by integrating Eq. �1� for an infinite bulk fluid in
equilibrium as explained below.

For a fluid on top of a flat homogeneous plateau, zH
�see Fig. 1�, the free energy per unit area can be written, in a
local density-functional approximation �11�, as

� = �
H

�

n�z�� f�n� − �
−�

H

Q�z − ��n�z�d� +
1

2
�

H

�
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− n�z��d� + �tnt�
0

H
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−�

0

Q�z − ��d��dz .

�2�

Here n�z�, nt, ns are the fluid, terrace, substrate particle den-
sities, and f�n� is free energy per particle of a homogeneous
fluid. The first term in the integrand is the free energy per
particle in the homogeneous fluid; the second term compen-
sates lost fluid-fluid interactions in the domain z�H which
are included in f�n�; the third term accounts for the inhomo-
geneous part of fluid-fluid interactions; the last two terms
represent the fluid-terrace and fluid-substrate interactions. All
interactions are described by the same hard-core interaction
potential differing only by interaction strength, A �fluid-
fluid�, At=�tA �fluid-terrace�, and As=�sA �fluid-substrate�.
The interaction kernel Q��� lumping intermolecular interac-
tion between the layers z=constant �11� is expressed then as
Q���= 1

2�A�−4 at �d.
Since the precursor layer is of molecular thickness, the

chemical potential shift is computed differently in the bulk
and precursor regions; this is unlike other self-propelled ac-
tive drop models �7� where a macroscopic precursor layer
was presumed. In the bulk region zH+d the chemical po-
tential shift ��h�−�0 from the equilibrium value in the bulk
fluid, �=�0, depends on the fluid thickness h and coincides
with the disjoining potential, 	�h�=�h� �12�. Neglecting the
vapor density, as well as density variation in a molecularly
thin interfacial layer, we can apply the sharp interface ap-
proximation �13�, assuming the fluid density to be constant,
n=n0 at H+d�z�h, where n0 is the equilibrium fluid par-
ticle density at �=�0, n=0 at zh. Defining �̂�h� by Eq. �2�

with the upper integration limit over z replaced by h and the
homogeneous part excluded, we compute

	�h� =
��

�h
= −

�An0
2

6
	 �

�h − H�3 +
��

h3 
 , �3�

where �=�tnt /n0−1 and ��= ��sns−�tnt� /n0 are dimension-
less Hamaker constants for fluid-terrace and terrace-substrate
interfaces.

The precursor film is assumed to be of a constant molecu-
lar thickness d, but the liquid density is allowed to vary
there, and is determined by minimizing the grand ensemble
thermodynamic potential F=�−��ndz. The disjoining po-
tential is identified here with the shift of the chemical poten-
tial per unit volume 	�n�=n���n�−�0� relative to the equi-
librium value �0 as a function of the local value of n �shifted
from its bulk equilibrium value under the action of the ter-
race and substrate�. It is determined by the Euler-Lagrange
equation derived from the integrand of �2� for z=H+d:

	 = n
d�nf�

dn
− n�0 −

�An

6
	n0�� + 1� − n

d3 +
��n0

�H + d�3
 .

�4�

The mobility coefficient k�h� is also computed separately
in the bulk and precursor regions and matched at the precur-
sor thickness. In the bulk region, Stokes flow with a kine-
matic slip condition �14� is assumed, while in the precursor
domain the mass transport is presumed to be purely diffu-
sional. This yields the mobility coefficient �14�

k�h� = ��2�h − H� + 1
3 �h − �H + d��3 at h  H + d;

�2d at h � H + d ,
�5�

where �=�D� /n0kBT�O�d� is the effective slip length; D
is the surface diffusivity, kB is the Boltzmann constant, and T
is the temperature.

The motion of a droplet placed on terraced landscape as
in Fig. 1 can be attributed to a difference in equilibrium
contact angles at the upper �H+� and lower �H−� terraces. The
rescaled angles can be calculated for ��0, ��1 by inte-
grating the static equation W=0 �11�, which reduces to

�2hxx=	. In the limit h→� we obtain

�± =� 2

�2

�

h0

�

	dh =��An2�
�26
d2 �1 −

��/�
�1 + H±/d�2 ,

�6�

where h0�H±+d. The direction of the droplet motion is de-
termined solely by the effective terrace–substrate interaction,
i.e. by the sign of ��: the droplet either ascends for ��0 or
descends for ���0 until equilibrium is reached. The equi-
librium condition �+=�− is satisfied either by H+=H− or
��=0. The formal small parameter of the lubrication ap-
proximation can be defined by setting �=1 for ��=0, which
yields ����An2 / �
d2�. Since 
�n2A /d2, a good estimate
is ����.

A decrement of contact angles should be preserved to
maintain droplet propagation. This is possible when the ter-
race edge is also allowed to move. The terrace motion due to
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surface freezing or melting was observed in the experiment
�8� when ambient temperature T was varied in the vicinity of
the surface freezing point Tm. When the terrace is at the foot
of a liquid droplet, the melting or freezing rate is limited by
the heat flux q required to supply or remove the latent heat L,
so that L�v=q�K�T−Tm� / �h−H+�, where K is thermal con-
ductivity and � is density �assumed to be equal for both
liquid and the frozen terrace layer�. The approximate expres-
sion for the heat flux �directed almost normally to the sub-
strate or terrace� corresponds to the lubrication approxima-
tion. The form of this relation defining the edge position x is

v =
dx

dt
=

K�T − Tm�
L��h − H+�

. �7�

To reproduce joint droplet-terrace dynamics observed in
�8�, we have carried out dimensionless one-dimensional �1D�
numerical computations of Eqs. �1� and �7�. The new dimen-

sionless variable forms are ĥ=h /d, �=x� /d, �= t�4
 / �d��,
and 	̂=	d / ��2
�. The particle densities are scaled by 1/b,
where b=2�d3 /3 is the excluded volume so that the respec-
tive dimensionless equations are

��ĥ = − ��k�ĥ�������ĥ − 	̂� , �8a�

v̂ =
d�

d�
=

�

ĥ − H+
, �8b�

where
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− n̂ ln�1
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d��

�4
d
�

K�T − Tm��
L�d
�3

, �8d�

�=A / �kBTd6� and �̂0=�0b / �kBT�. The same notation is re-
tained for the dimensionless variables, and Eq. �5� remains
without change, except for replacing d→1. The density in
the precursor domain n̂ is transformed to effective height as

n̂= n̂0�ĥ−H�. We adopted the explicit spectral method; the
reflecting boundary conditions are imposed by doubling the
grid size. The initial state in each computation includes a
droplet with its maximum placed above the terrace edge and
a precursor film of unit thickness �see Fig. 1�. The parameter
� defining the ratio of characteristic velocities of the edge to
droplet motion is of O�1� when the temperature difference is
in the range of O�10−3� �K�.

Synchronous droplet-terrace motion under melting condi-
tions is shown in Fig. 2. This joint propagation can be ex-
plained in terms of terminal velocity of the terrace. While the
terrace is below the droplet, the droplet velocity is deter-
mined by the difference in contact angle values, according to
�6�. On the other hand, the terrace velocity �for a fixed ��
depends solely on the thickness of the liquid layer above the
terrace edge. At the start, the droplet moves to the left, while
the terrace remains almost stationary because of slow trans-
port through a thick layer, as shown Fig. 2�a� and 2�b�. As
the fluid height above the edge decreases, the terrace gains
speed �see Fig. 2�b� and 2�c��, until it reaches an “equilib-
rium” position, such that the point at the droplet interface

just above the edge where the thickness is ĥc moves with the

same speed v̂=� / �ĥc−H+�. The stable position should lie
near the trailing edge; then, if the terrace moves faster than
the droplet, the liquid layer thickness above it increases and

the terrace decelerates. As a result, the value ĥ= ĥc remains
constant, as seen in Fig. 2�c� and 2�d� and more precisely in

FIG. 2. Numerical solution of the fluid and the terrace according
to Eq. �8�, showing the melting process �a–d� at respective time
steps �from top to bottom: 50, 210, 400, and 650�. The horizontal

range is �= �0,120� and the vertical range is ĥ= �0,20�. The dotted

line marks the droplet height above the terrace edge, ĥc. The inset

shows the dependence of ĥc−H+ as a function of time and its re-

laxation to an equilibrium value ĥc−H+�4. Parameters: �=−0.3,
�=15, �=�3, l=2, H+=2l, H−= l, ��=−10, and �=−4.

FIG. 3. Numerical solution of Eq. �8�, showing the freezing
process �a–e� at respective time steps �from top to bottom: 0, 410,
581.85, 581.88, and 581.92�. The horizontal range is �= �0,120�
and the vertical range is ĥ= �0,12�. The dotted line in �c–e� marks
the droplet position according to its maximal height. The inset

shows the dependence of ĥc−H+ on time in the vicinity of the
critical droplet volume. Parameters: �=−0.3, �=15, �=�3, l=2,
H+=2l, H−= l, ��=1.5, and �=4.
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inset of Fig. 2�d�. This dynamic feedback allows the droplet
and the terrace to synchronize their motion. As implied by
�6�, we found that the synchronous propagation velocity de-
pends on the layers thickness H+=Nl and will be discussed
elsewhere �15�.

In the freezing case, the droplet volume decreases, since
the total mass of the system is conserved and the fluid is
solidified. The droplet and the terrace may still jointly propa-
gate as long as the droplet height is relatively large compared
to the precursor thickness, as shown in Fig. 3�a�–3�c�. In a
such motion the droplet and the terrace preserve the equilib-
rium height ĥ= ĥc �see Fig. 3�b� and 3�c��. As the droplet
volume decreases below the equilibrium height ĥc, the ter-
race propagates faster than the droplet and runs out to its
leading edge �see Fig. 3�d� and 3�e��. Following this, the
motion stops, since further terrace propagation is limited by
slow material supply through the precursor, and the droplet is
left in an equilibrium state on the top of a flat smectic layer
�8�. This behavior is also presented in the inset of Fig. 3. As

the terrace passes the maximum droplet’s height, the critical

value ĥc−H+ decreases to unity �i.e., the precursor thick-
ness�. The droplet velocity at the same time drops to zero,
while the terrace velocity �dashed line� jumps abruptly. Simi-
lar behavior has been also observed experimentally �9�.

We have proposed a model for self-propelled droplets
on top of a terraced landscape driven by surface freezing
or melting. The numerical estimates show the characteristic
terrace edge velocity v�O�102���m/sec� close to the
experimental data �8� at temperature variations around
the surface melting temperature T−Tm�O�10−3� �K� and
hc�O�d��0.1 �nm�.
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